Use of deep learning frameworks to detect super-responder and super-survivor stage IV squamous non-small-cell lung cancer (NSCLC) patients treated with a gemcitabine and cisplatin combination

Background: Synthetic fingerprints integrate clinical data within computational models allowing the identification of particular clinical subpopulations at a given moment. We here describe a deep learning strategy to detect super-responder and super-survivor patients with squamous NSCLC by setting up synthetic fingerprints and using unsupervised deep learning frameworks (UDLF). Methods: Through www.projectdatasphere.org, we accessed the control…

Predicting disease progression and mortality in metastatic colorectal cancer patients (mCRC) through an artificial intelligence-based analytical tool

Background: Predicting the clinical course of metastatic disease remains a key challenge in CRC. Estimating prognosis of these late-stage patients can avoid undertreatment or overtreatment and also guide the follow-up intensity. This study has investigated the ability of an artificial intelligence-based analytical tool to identify those mCRC patients with high risk of disease progression and…